Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(7): 1561-1570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285227

RESUMO

The abuse of herbicides has emerged as a great threat to food security. Herein, a low-background interference detection method based on UPLC-MS was developed for the simultaneous determination of glufosinate, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) in foods. Initially, this study proposed a simple and rapid pretreatment method, utilizing water extraction and PRiME HLB purification to isolate glyphosate, glufosinate, and AMPA from food samples. After the optimization of pretreatment conditions, the processed samples are then analyzed directly by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) without pre-column derivatization. The method can effectively reduce interference from by-products of pre-column derivatization and background substrates of food sample, showing low matrix effects (ME) ranging from - 24.83 to 32.10%. Subsequently, the method has been validated by 13 kinds of food samples. The recoveries of the three herbicides in the food samples range from 84.2 to 115.6%. The limit of detection (LOD) is lower to 0.073 mg/kg, 0.017 mg/kg, and 0.037 mg/kg, respectively. Moreover, the method shows an excellent reproducibility with relative standard deviations (RSD) within 16.9%. Thus, the method can provide high trueness, reproducibility, sensitivity, and interference-free detection to ensure human health safety.


Assuntos
Aminobutiratos , 60658 , Herbicidas , Organofosfonatos , Humanos , Cromatografia Líquida/métodos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glicina , 60705 , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Herbicidas/análise , Cromatografia Líquida de Alta Pressão
2.
J Cell Mol Med ; 27(24): 4145-4154, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849385

RESUMO

Amyloid-ß1-42 (Aß1-42 ) is strongly associated with Alzheimer's disease (AD). The aim of this study is to elucidate whether and how miR-6076 participates in the modulation of amyloid-ß (Aß)-induced neuronal damage. To construct the neuronal damage model, SH-SY5Y cells were treated with Aß1-42 . By qRT-PCR, we found that miR-6076 is significantly upregulated in Aß1-42 -treated SH-SY5Y cells. After miR-6076 inhibition, p-Tau and apoptosis levels were downregulated, and cell viability was increased. Through online bioinformatics analysis, we found that B-cell lymphoma 6 (BCL6) was a directly target of miR-6076 via dual-luciferase reporter assay. BCL6 overexpression mediated the decrease in elevated p-Tau levels and increased viability in SH-SY5Y cells following Aß1-42 treatment. Our results suggest that down-regulation of miR-6076 could attenuate Aß1-42 -induced neuronal damage by targeting BCL6, which provided a possible target to pursue for prevention and treatment of Aß-induced neuronal damage in AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Neuroblastoma , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Peptídeos beta-Amiloides/toxicidade , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Apoptose/genética , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-6/genética
3.
Insect Sci ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37846895

RESUMO

The rice stem borer (RSB), Chilo suppressalis, a notorious rice pest in China, has evolved a high resistance level to commonly used insecticides. Tetraniliprole, a new anthranilic diamide insecticide, effectively controls multiple pests, including RSB. However, the potential resistance risk of RSB to tetraniliprole is still unknown. In this study, the tetraniliprole-selection (Tet-R) strain was obtained through 10 continuous generations of selection with tetraniliprole 30% lethal concentration (LC30 ). The realized heritability (h2 ) of the Tet-R strain was 0.387, indicating that resistance of RSB to tetraniliprole developed rapidly under the continuous selection of tetraniliprole. The Tet-R strain had a high fitness cost (relative fitness = 0.53). We established the susceptibility baseline of RSB to tetraniliprole (lethal concentration at LC50  = 0.727 mg/L) and investigated the resistance level of 6 field populations to tetraniliprole. All tested strains that had resistance to chlorantraniliprole exhibited moderate- to high-level resistance to tetraniliprole (resistance ratio = 27.7-806.8). Detection of ryanodine receptor (RyR) mutations showed that the Y4667C, Y4667D, I4758M, and Y4891F mutations were present in tested RSB field populations. RyR mutations were responsible for the cross-resistance between tetraniliprole and chlorantraniliprole. Further, the clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated genome-modified flies were used to study the contribution of RyR mutations to tetraniliprole resistance. The order of contribution of a single RyR mutation to tetraniliprole resistance was Y4667D > G4915E > Y4667C ≈ I4758M > Y4891F. In addition, the I4758M and Y4667C double mutations conferred higher tetraniliprole resistance than single Y4667C mutations. These results can guide resistance management practices for diamides in RSB and other arthropods.

4.
Molecules ; 28(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894626

RESUMO

The very slow anodic oxygen evolution reaction (OER) greatly limits the development of large-scale hydrogen production via water electrolysis. By replacing OER with an easier urea oxidation reaction (UOR), developing an HER/UOR coupling electrolysis system for hydrogen production could save a significant amount of energy and money. An Al-doped cobalt ferrocyanide (Al-Co2Fe(CN)6) nanocube array was in situ grown on nickel foam (Al-Co2Fe(CN)6/NF). Due to the unique nanocube array structure and regulated electronic structure of Al-Co2Fe(CN)6, the as-prepared Al-Co2Fe(CN)6/NF electrode exhibited outstanding catalytic activities and long-term stability to both UOR and HER. The Al-Co2Fe(CN)6/NF electrode needed potentials of 0.169 V and 1.118 V (vs. a reversible hydrogen electrode) to drive 10 mA cm-2 for HER and UOR, respectively, in alkaline conditions. Applying the Al-Co2Fe(CN)6/NF to a whole-urea electrolysis system, 10 mA cm-2 was achieved at a cell voltage of 1.357 V, which saved 11.2% electricity energy compared to that of traditional water splitting. Density functional theory calculations demonstrated that the boosted UOR activity comes from Co sites with Al-doped electronic environments. This promoted and balanced the adsorption/desorption of the main intermediates in the UOR process. This work indicates that Co-based materials as efficient catalysts have great prospects for application in urea electrolysis systems and are expected to achieve low-cost and energy-saving H2 production.

5.
Nanoscale ; 15(25): 10529-10557, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37323021

RESUMO

Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.


Assuntos
Estruturas Metalorgânicas , Nanocompostos , Estruturas Metalorgânicas/química , Ligantes , Nanocompostos/química
6.
Anal Bioanal Chem ; 415(17): 3581-3592, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37243734

RESUMO

Enrichment for the detection of quinolone residues is usually cumbersome and requires large amounts of toxic organic reagents. Therefore, this study synthesized a low-toxicity hydrophobic deep eutectic solvent (DES) with DL-menthol and p-cresol, which was then characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and thermal analysis. A simple and rapid vortex-assisted liquid-liquid microextraction method was developed based on this DES for the extraction of eight quinolones from cattle urine. The optimal extraction conditions were screened by examining the DES volume, extraction temperature, vortex time, and salt concentration. Under the optimal conditions, the linear ranges of the eight quinolones were 1 ~ 100 µg/L with good linearity (r2 was 0.998 ~ 0.999), and the limits of detection and quantification were 0.08 ~ 0.30 µg/L and 0.27 ~ 0.98 µg/L, respectively. The average extraction recoveries of spiked cattle urine samples were 70.13 ~ 98.50% with relative standard deviations below 13.97%. This method can provide a reference for the pre-treatment of quinolone residue detection.


Assuntos
Microextração em Fase Líquida , Quinolonas , Bovinos , Animais , Solventes/química , Solventes Eutéticos Profundos , Cloreto de Sódio , Interações Hidrofóbicas e Hidrofílicas , Microextração em Fase Líquida/métodos , Limite de Detecção , Cromatografia Líquida de Alta Pressão/métodos
7.
Anal Chem ; 95(15): 6417-6424, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37031399

RESUMO

Rapid and sensitive detection of foodborne bacteria is of great significance in guaranteeing food safety and preventing foodborne diseases. A bifunctional Au@Pt core-shell nanozyme with excellent catalytic properties and high surface-enhanced Raman scattering (SERS) activity was developed for the highly sensitive detection of Salmonella typhimurium based on a label-free SERS strategy. The ultrathin Pt shell (about 1 nm) can catalyze Raman-inactive molecules into Raman-active reporters, greatly amplifying the amount of signal molecules. Moreover, the Au core serves as an active SERS substrate to enhance the signal of reporter molecules, further significantly improving the detection sensitivity. Benefiting from the excellent properties, such a bifunctional Au@Pt nanozyme was integrated with a magnetic immunoassay to construct a label-free SERS platform for the highly sensitive detection of S. typhi with a low detection limit of 10 CFU mL-1. Also, the Au@Pt-based SERS platform exhibited excellent selectivity and was successfully utilized for the detection of S. typhi in milk samples by a portable Raman spectrometer. Our demonstration of the bifunctional nanozyme-based SERS strategy provides an efficient pathway to improve the sensitivity of label-free SERS detection of pathogens and holds great promise in food safety, environmental analysis, and other biosensing fields.


Assuntos
Técnicas Biossensoriais , Doenças Transmitidas por Alimentos , Nanopartículas Metálicas , Humanos , Animais , Leite , Inocuidade dos Alimentos , Imunoensaio , Análise Espectral Raman , Ouro/química , Nanopartículas Metálicas/química
8.
Adv Mater ; 35(29): e2300813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080594

RESUMO

Thermal protection under extreme conditions requires materials with excellent thermal insulation properties and exceptional mechanical properties to withstand a variety of complex external stresses. Mesoporous silica aerogels are the most widely used insulation materials due to their ultralow thermal conductivity. However, they still suffer from mechanical fragility and structural instability in practical applications. Herein, a nacre-mimetic nanocomposite aerogel, synthesized via in situ growth of inorganic minerals in a lamellar cellulose nanofibrous network, is reported. The multiscale structural adaptation of the inorganic-organic components endows nanocomposite aerogels with rapid configuration recovery during ambient pressure drying. The resulting aerogels show ultralow thermal conductivities (17.4 mW m-1  K-1 at 1.0 atm). These aerogels also integrate challenging mechanical properties, including high compressive stiffness to resist deformation under the pressure of an adult, superelasticity to prevent static and dynamic stress cracking even under the crushing of a vehicle (1.6 t), and high bending flexibility to adapt to any surface. Moreover, they exhibit excellent structural stability under fatigue stress/strain cycles over a wide temperature range (-196 to 200 °C). The combination of high thermal insulation performance and excellent mechanical properties offers a potential material system for robust thermal superinsulation under extreme conditions, especially for aerospace applications.

9.
Nanomicro Lett ; 15(1): 64, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899127

RESUMO

Solar-driven interfacial evaporation is an emerging technology for water desalination. Generally, double-layered structure with separate surface wettability properties is usually employed for evaporator construction. However, creating materials with tunable properties is a great challenge because the wettability of existing materials is usually monotonous. Herein, we report vinyltrimethoxysilane as a single molecular unit to hybrid with bacterial cellulose (BC) fibrous network, which can be built into robust aerogel with entirely distinct wettability through controlling assembly pathways. Siloxane groups or carbon atoms are exposed on the surface of BC nanofibers, resulting in either superhydrophilic or superhydrophobic aerogels. With this special property, single component-modified aerogels could be integrated into a double-layered evaporator for water desalination. Under 1 sun, our evaporator achieves high water evaporation rates of 1.91 and 4.20 kg m-2 h-1 under laboratory and outdoor solar conditions, respectively. Moreover, this aerogel evaporator shows unprecedented lightweight, structural robustness, long-term stability under extreme conditions, and excellent salt-resistance, highlighting the advantages in synthesis of aerogel materials from the single molecular unit.

10.
Chemistry ; 28(55): e202201664, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35796204

RESUMO

Mesoscopic aggregate is important to transfer or even amplify the molecular information in macroscopic materials. As an important branch of aggregate science, aggregation-induced emissive luminogens (AIEgens) often show slight or even no emission in solutions but exhibit bright emission when they aggregate, which open a new avenue for the practical applications. Due to the flexible and rotor structure of AIEgens, the aggregate structure of AIEgens is highly sensitive to the surrounding microenvironment, resulting in adjustable optical properties. Fibers integrated of a multiplicity of functional components are ideal carriers to control the aggregation processes, further assembly of fibers produces large-scale fabrics with amplified functions and practical values. In this Concept article, we focus on the latest advances on the synergy between "AIE+Fiber" for the boosted performance that beyond AIE, and their applications are presented and abstracted out to stimulate new ideas for developing "AIE+Fiber" systems.

11.
Biomaterials ; 287: 121666, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35835002

RESUMO

Environmental monitoring and personal protection are critical for preventing and for protecting human health during all infectious disease outbreaks (including COVID-19). Fluorescent probes combining sensing, imaging and therapy functions, could not only afford direct visualizing existence of biotargets and monitoring their dynamic information, but also provide therapeutic functions for killing various bacteria or viruses. Luminogens with aggregation-induced emission (AIE) could be well suited for above requirements because of their typical photophysical properties and therapeutic functions. Integration of these molecules with fibers or textiles is of great interest for developing flexible devices and wearable systems. In this review, we mainly focus on how fibers and AIEgens to be combined for health protection based on the latest advances in biosensing and bioprotection. We first discuss the construction of fibrous sensors for visualization of biomolecules. Next recent advances in therapeutic fabrics for individual protection are introduced. Finally, the current challenges and future opportunities for "AIE + Fiber" in sensing and therapeutic applications are presented.

12.
Front Chem ; 10: 843070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237563

RESUMO

Solar-driven vapor generation is emerging as an eco-friendly and cost-effective water treatment technology for harvesting solar energy. Aerogels are solid materials with desirable high-performance properties, including low density, low thermal conductivity, and high porosity with a large internal surface, which exhibit outstanding performance in the area of solar vapor generation. Using fibers as building blocks in aerogels could achieve unexpected performance in solar vapor generation due to their entangled fibrous network and high surface area. In this review, based on the fusion of the one-dimensional fibers and three-dimensional porous aerogels, we discuss recent development in fibrous aerogels for solar vapor generation based on building blocks synthesis, photothermal materials selection, pore structures construction and device design. Thermal management and water management of fibrous aerogels are also evaluated to improve evaporation performance. Focusing on materials science and engineering, we overview the key challenges and future research opportunities of fibrous aerogels in both fundamental research and practical application of solar vapor generation technology.

13.
Signal Transduct Target Ther ; 6(1): 235, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34131110

RESUMO

Inflammatory bowel disease (IBD) is a chronic and relapsing disorder for many people associated with poor health. Although there are some clinical drugs for IBD treatment, the development of effective therapeutics on IBD patients has always been necessary. Here, we show that externalized phosphatidylserine (PS) is observed on the surface of colonic capillaries. Annexin A5 (ANXA5) with high affinity for PS has a good targeting to the colon and effectively alleviates experimental colitis. In contrast, ANXA5 mutant (A5m) lacking the PS-binding ability, has no accumulation in the colon and no therapeutic effects on colitis. Mechanistic investigations indicate that ANXA5 reduces the inflammatory cell infiltration by inhibiting endothelial cell activation dependent on PS-binding ability. With the increasing of PS exposure on activated HUVECs (human umbilical vein endothelial cells), ANXA5 binding induces the internalization of TLR4 via PS-dependent endocytosis. We provide new insights on the molecular mechanism of ANXA5 for its anti-inflammatory effect. Our data suggest that PS-externalization is a potential target of ANXA5 aiming at targeted drug delivery (TDD) for IBD treatment.


Assuntos
Capilares/metabolismo , Colo/irrigação sanguínea , Colo/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Fosfatidilserinas/metabolismo , Animais , Anexina A5/metabolismo , Capilares/patologia , Colo/patologia , Feminino , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/terapia , Camundongos , Camundongos Endogâmicos BALB C
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119566, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607489

RESUMO

Multiplex surface-enhanced Raman scattering (SERS) detection of markers without background in tumor biosystems has its superiority over other optical methods. Herein, we reported a strategy of quantitative discrimination of two breast cancer cell subtypes. Based on our previous studies, two kinds of Prussian blue analogue coated gold nanoparticles (Au@PBA NPs) were designed and synthesized by the replacement of Fe2+ with Pb2+ or Cu2+. Therefore, two distinct SERS emissions of C≡N bonds at 2122 cm-1 and 2176 cm-1 have been acquired. When modified with aptamers of epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), which are both expressed in MCF-7 and MDA-MB-231 cell lines but in different levels, the SERS nanoprobes simultaneously identified the relative expression of these biomarkers on the cell surface, providing a good example for ratiometric detection in biosystems without any interference. Each surface marker of tumor cells corresponds to a single SERS emission. Thus, each subtype could be described in a molecular profiling way through duplex C≡N bonds-based SERS emission, which is more advanced than traditional flow cytometry method.


Assuntos
Nanopartículas Metálicas , Neoplasias , Ferrocianetos , Ouro , Análise Espectral Raman
15.
Eur J Pharmacol ; 897: 173927, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33567320

RESUMO

Rotavirus (RV) infection is a leading cause of severe, dehydrating gastroenteritis in children < 5 years of age, and by now, the prevention and treatment of RV are still the major public health problems due to a lack of specific clinical drugs. Thus, the aims of this study are to explore the anti-RV effect of baicalin and its influence on glucose metabolism. Here, we demonstrated for the first time that baicalin had an anti-RV attachment effect with the strongest effect at a concentration of 100 µM, and also inhibited the replication of RV at concentrations of 100, 125, 150, 175, and 200 µM. Moreover, baicalin helped to overcome the weight loss and reduced the diarrhea rate and score with the best therapeutic effect at a concentration of 0.3 mg/g in RV-infected neonatal mice. Interestingly, baicalin decreased glucose consumption in RV-infected Caco-2 cells with the optimal concentration of 125 µM. Next, metabolomic analysis indicated that there were 68 differentially expressed metabolites, including an increase in pyruvic acid, asparagine, histidine and serine, and a decrease in dihydroxyacetone phosphate, which suggested that the underlying signaling pathway was gluconeogenesis. Further studies demonstrated that baicalin inhibited gluconeogenesis via improving glucose 6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxylase (PEPCK). Moreover, baicalin upregulated the potential gluconeogenesis proteins named salt inducible kinase 2, pyruvate dehydrogenase kinase 1, AKT serine/threonine kinase 1 and down-regulated phosphorylated c-Jun NH2-terminal kinase, which are associated with G-6-Pase and PEPCK expressions. Therefore, baicalin improved the gluconeogenesis disruption caused by RV.


Assuntos
Antivirais/farmacologia , Flavonoides/farmacologia , Gluconeogênese/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Infecções por Rotavirus/tratamento farmacológico , Rotavirus/efeitos dos fármacos , Animais , Células CACO-2 , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Metaboloma , Metabolômica , Camundongos , Fosforilação , Rotavirus/patogenicidade , Infecções por Rotavirus/enzimologia , Infecções por Rotavirus/virologia , Transdução de Sinais , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
16.
Front Chem ; 8: 824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195035

RESUMO

Binding small molecules through non-covalent molecular forces affords supramolecules, such as hydrogen bonds, with electrostatic, π-π interactions, van der Waals forces, and hydrophobic effects. Due to their good biocompatibility, low immunogenicity, and biodegradability, supramolecules have been intensely studied as multifunctional drug delivery platforms in targeted cancer therapy. In consideration of the defective therapeutic efficacy induced by simply transporting the therapeutic agents into tumor tissues or cancer cells instead of subcellular organelles, research is progressing toward the development of subcellular targeted cancer therapy (STCT) strategies. STCT is one of the most recent developments in the field of cancer nanomedicine. It is defined as the specific transportation of therapeutic agents to the target organelles for cancer treatment, which makes therapeutic agents accumulate in the target organelles at higher concentrations than other subcellular compartments. Compared with tumor-targeted and cancer-cell-targeted therapies, STCT exhibits dramatically improved specificity and precision, diminished adverse effects, and enhanced capacity to reverse multidrug resistance (MDR). Over the past few decades, peptides have played increasingly essential roles in multi-types of tumor-targeted drug delivery systems. Moreover, peptide-mediated STCT is becoming an emerging approach for precision cancer therapy and has been used in various cancer treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy, gene therapy, and non-drug-loaded nanoassemblies. In this review, we will focus on recent innovations in the variety of peptides used in designing peptide-decorated supramolecules for cell-membrane-, mitochondria-, and nucleus-localized STCT.

17.
Nanoscale ; 12(47): 24054-24061, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33244546

RESUMO

We report a batch preparation of mm-scale 3D Ag hetero-nanoclusters which exhibit an excellent surface plasmon resonance ability via facile laser metallurgy. Under laser irradiation, the porous AgI-based coordination network crystals were instantly converted into 3D graphite-encapsulated Ag hetero-nanoclusters with uniform sizes and gaps in several seconds. The obtained hetero-nanoclusters exhibited superior 3D confocal laser energy utilization compared with the other 0D, 1D and 2D SERS substrates, solving the bottleneck caused by laser focusing deviation in the SERS active depth. The mass-produced SERS devices were ultra-sensitive for the detection of life and industrial organic pollutants in terms of low detection and enriched capacity.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32802121

RESUMO

MATERIALS AND METHODS: In this study, a network pharmacology-based strategy was used to elucidate the mechanism of GGQLD for the treatment of RVE. Oral bioavailability and drug-likeness were taken as the judgment criteria to search the active ingredients of GGQLD in traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). The affinity between protein and ingredients was further determined using the similarity ensemble approach to find the corresponding targets. According to the genes related to enteritis in GeneCards database, the key targets were screened by intersections between drug and disease targets. And the therapeutic mechanism was predicted using the protein-protein interactions (PPIs), the Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, which was verified by detecting calcium ion concentration with the fluorescent probe. RESULT: 130 active ingredients were screened from GGQLD, including (R)-canadine, moupinamide, formononetin, and other flavonoids. They act on a total of 366 targets, which is mainly distributed in the biological process of hormone binding or signaling pathways of neuroactive ligand receptor interaction, serotonergic synapse, and calcium signaling pathway. Furthermore, serotonin receptors, adrenergic receptors, cholinergic receptors, and dopamine receptors in the enteric nervous system may be the key targets of RVE treatment by GGQLD. CONCLUSION: This study demonstrated that the potential mechanism that GGQLD can effectively improve the symptoms of RVE may depend on the regulation of calcium ions, serotonin, and gastrointestinal hormone ion that could mutually affect the intestinal nervous system.

19.
Nanoscale ; 12(5): 3292-3301, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31971195

RESUMO

Surface-enhanced Raman scattering (SERS) and magnetic resonance imaging (MRI)-guided phototherapy are new breakthroughs in cancer therapeutics due to their complementary advantages, such as enhanced imaging spatial resolution and depth. Herein, we synthesized monodispersed Prussian blue-encapsulated gold nanoparticles (Au@PB NPs), in which the plasmonic gold core plus coordination polymer of cyanide (C[triple bond, length as m-dash]N) and iron ions coincidently become a superexcellent contrast agent for both MRI and zero-background SERS imaging. PB, as a signal source for MR and SERS, can be easily assembled onto single Au NPs, of which iron ions possess high relaxation efficiency for in vivo MRI, e.g., the longitudinal and transversal relaxation efficiency values are 0.86 mM-1 s-1 (r1) and 5.42 mM-1 s-1 (r2), respectively. Furthermore, with the help of the plasmonic enhancement of the gold core, the C[triple bond, length as m-dash]N groups exhibit a specific, strong, and stable (3S) SERS emission in the Raman-silent region (1800-2800 cm-1), allowing accurate in vivo imaging at the single or even subcellular level. More importantly, PB has remarkable absorption properties in the near infrared region, and can be used as a photosensitizer for photothermal (PT) and photodynamic (PD) therapy simultaneously. Hence, the ideal integration of a plasmonic Au core and PB shell into a single monodispersed MR-guided NP, with zero-background SERS signals, is an important candidate for both tumor navigation and in situ PT/PD treatment guided by SERS/MR dual-mode imaging.


Assuntos
Meios de Contraste , Ferrocianetos , Ouro , Imageamento por Ressonância Magnética , Nanopartículas , Neoplasias Experimentais , Fármacos Fotossensibilizantes , Fototerapia , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacologia , Ferrocianetos/química , Ferrocianetos/farmacologia , Ouro/química , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
20.
Anal Chem ; 91(21): 13866-13873, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31603655

RESUMO

High-throughput optical labeling technologies have become increasingly important with the growing demands for molecular detection, disease diagnosis, and drug discovery. In this thought, a series of CN-bridged coordination polymer encapsulated gold nanoparticles have been developed as a universal and interference-free optical label through a facile and auxiliary agent-free self-assembly route. Moreover, surface-enhanced Raman scattering (SERS) emissions of CN-bridge can be tuned flexibly by simple replacement of Fe2+/Fe3+ with other metal ions relying on the synthesis of three Prussian blue analogues encapsulated gold nanoparticles (Au@PBA NPs). Thus, three distinct Raman frequencies have been acquired, which merely replaced the metal irons. On the basis of the potential supermultiplex optical label, space-confined surface-enhanced Raman scattering (SERS) emissions have been realized. Relying on "Abbe theorem", the focused laser allows the pure and single triple bond-coded SERS emissions to be combined into a unique and independent output, so-called "combined SERS emission" (c-SERS), if the Au@PBA NPs were confined into one micrometer-scale object. This study demonstrated c-SERS may simultaneously provide 2n - 1 optical labels only using n single emissions in the Raman-silent region for micrometer-size objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...